
fprintf('STARTING ANALYSIS OF Track %.0f.wav', ii)
[~,Fs] = audioread(path, [1,2]);
mem = memlength*60*60*Fs;

%This mess breaks up the file automatically into manageable chunks just to
%determine lengthx and not run out of memory

if roundhours<= 10
 [x,Fs] = audioread(path);
 lengthx = length(x);
elseif roundhours<=20
 [x,~] = audioread(path, [1, mem]);
 lengthx = length(x);
 clear x
 [x2,Fs] = audioread(path, [mem+1,inf]);
 lengthx = lengthx + length(x2);
 clear x2
elseif roundhours<=30
 [x,~] = audioread(path, [1, mem]);
 lengthx = length(x);
 clear x
 [x2,~] = audioread(path, [mem+1,2*mem]);
 lengthx = lengthx + length(x2);
 clear x2
 [x3,Fs] = audioread(path, [2*mem+1,inf]);
 lengthx = lengthx + length(x3);
 clear x3
elseif roundhours<=40
 [x,~] = audioread(path, [1, mem]);
 lengthx = length(x);
 clear x
 [x2,~] = audioread(path, [mem+1,2*mem]);
 lengthx = lengthx + length(x2);
 clear x2
 [x3,~] = audioread(path, [2*mem+1,3*mem]);
 lengthx = lengthx + length(x3);
 clear x3
 [x4,Fs] = audioread(path, [3*mem+1,inf]);
 lengthx = lengthx + length(x4);
 clear x4
elseif roundhours<=50
 [x,~] = audioread(path, [1, mem]);
 lengthx = length(x);
 clear x
 [x2,~] = audioread(path, [mem+1,2*mem]);
 lengthx = lengthx + length(x2);
 clear x2
 [x3,~] = audioread(path, [2*mem+1,3*mem]);
 lengthx = lengthx + length(x3);
 clear x3

 [x4,~] = audioread(path, [3*mem+1,4*mem]);
 lengthx = lengthx + length(x4);
 clear x4
 [x5,Fs] = audioread(path, [4*mem+1,inf]);
 lengthx = lengthx + length(x5);
 clear x5
elseif roundhours<=60
 [x,~] = audioread(path, [1, mem]);
 lengthx = length(x);
 clear x
 [x2,~] = audioread(path, [mem+1,2*mem]);
 lengthx = lengthx + length(x2);
 clear x2
 [x3,~] = audioread(path, [2*mem+1,3*mem]);
 lengthx = lengthx + length(x3);
 clear x3
 [x4,~] = audioread(path, [3*mem+1,4*mem]);
 lengthx = lengthx + length(x4);
 clear x4
 [x5,~] = audioread(path, [4*mem+1,5*mem]);
 lengthx = lengthx + length(x5);
 clear x5
 [x6,Fs] = audioread(path, [5*mem+1,inf]);
 lengthx = lengthx + length(x6);
 clear x6
elseif roundhours<=70
 [x,~] = audioread(path, [1, mem]);
 lengthx = length(x);
 clear x
 [x2,~] = audioread(path, [mem+1,2*mem]);
 lengthx = lengthx + length(x2);
 clear x2
 [x3,~] = audioread(path, [2*mem+1,3*mem]);
 lengthx = lengthx + length(x3);
 clear x3
 [x4,~] = audioread(path, [3*mem+1,4*mem]);
 lengthx = lengthx + length(x4);
 clear x4
 [x5,~] = audioread(path, [4*mem+1,5*mem]);
 lengthx = lengthx + length(x5);
 clear x5
 [x6,~] = audioread(path, [5*mem+1,6*mem]);
 lengthx = lengthx + length(x6);
 clear x6
 [x7,Fs] = audioread(path, [6*mem+1,inf]);
 lengthx = lengthx + length(x7);
 clear x7
elseif roundhours<=80
 [x,~] = audioread(path, [1, mem]);
 lengthx = length(x);

 clear x
 [x2,~] = audioread(path, [mem+1,2*mem]);
 lengthx = lengthx + length(x2);
 clear x2
 [x3,~] = audioread(path, [2*mem+1,3*mem]);
 lengthx = lengthx + length(x3);
 clear x3
 [x4,~] = audioread(path, [3*mem+1,4*mem]);
 lengthx = lengthx + length(x4);
 clear x4
 [x5,~] = audioread(path, [4*mem+1,5*mem]);
 lengthx = lengthx + length(x5);
 clear x5
 [x6,~] = audioread(path, [5*mem+1,6*mem]);
 lengthx = lengthx + length(x6);
 clear x6
 [x7,~] = audioread(path, [6*mem+1,7*mem]);
 lengthx = lengthx + length(x7);
 clear x7
 [x8,Fs] = audioread(path, [7*mem+1,inf]);
 lengthx = lengthx + length(x8);
 clear x8
end

% This if statement calculates the length of the end of the recording that
% extends beyond the last 30 minute chunk:
if (0<minute) && (minute<30)
 endtime = rem((lengthx-(30-minute)*60*Fs),30*Fs*60);
elseif (30<minute) && (minute<=59)
 endtime = rem((lengthx-(60-minute)*60*Fs),30*Fs*60);
else
 endtime = rem(lengthx,30*Fs*60);
end
%% While loop to evaluate every 30 minutes of recording

datablock = [];
k=0; %lead indexing value
q = 1; %indexing value needed for plotting U (flight activity per
30 minutes of recording
U = []; %set up U to contain number of flight bouts (counter) per 30
minute chunk
allnewz = []; %set up allnewz to contain all concatenated newz arrays
(which becomes the signal containing only flight)
lastrun = 0; %set up variable that changes when the loop is on its last
run-through (for triggering the code to state an ending time)
iteration = 1;
while k< lengthx
fprintf('\nTime: %02d:%02d', [hour, minute]) %state the time at the start of each
30 minute chunk
 if k == lengthx - endtime %case where there is not a full 30

minutes left in the recording, only endtime(quantity) samples remain
 sam = endtime; %sam is the number of samples the
loop advances by every cycle (here it is set to the exact number of samples
remaining in the signal)
 start = k; %the starting point for audioread
command is defined by k, which tracks how far along in x the program is
 lastrun = 1; %changes lastrun value to 1, because
it is the final run-through of the loop
 else %if the loop is not about to end:
 if 0<minute && minute<30 %if the starting minute of the
recording is between 0 and 30 minutes
 sam = (30-minute)*60*Fs; %set sam (how much to advance) to the
number of samples (amount of time) between the starting minute and the next 30
minute starting point
 start = 1; %because this only happens in the
first iteration, the code will start with the first value in x
 elseif 30<minute && minute<=59 %if starting minute between 30 and
the next hour
 sam = (60-minute)*60*Fs; %set sam to advance the difference to
the next hour
 start = 1;
 if hour == 23 %make 24-hr time loop back to 00:00
instead of 24:00
 hour = 0;
 else
 hour = hour+1; %advance hour
 end
 else
 sam = 30*60*Fs; %if starting minute is already on the
hour or half hour
 if k==0 %k begins as zero, but must become 1
to be used
 start = 1;
 else
 start = k; %sets start point to k. This should
be the case for all but the first and last iteration
 end
 end

 end

 [c,Fsc] = audioread([path2folder filename num2str(0) num2str(8) '.wav'],
[start,start+sam]); %get c, the signal for vial 8, which records only the sound of
the room
 [x,Fs] = audioread(path, [start,start+sam]); %get x, the signal, in a chunk size
defined by the variable sam

 N = length(x); % signal length of x
 t = (0:N-1)/Fs; % time vector (useful for plotting)

 ratio = median(abs(x))/median(abs(c)); %differences in sensitivity could make x
or c levels of silence uneven. This attempts to equalize the levels of silence in
the two recordings via creating a ratio of median values
 c = c*ratio; %c is then multiplied by this ratio

 fracsec = .01; % small step of time which will be analyzed
 step = fracsec*Fs; % convert fracsec to no. of samples
 stdevc = std(c); % standard deviation of track 8 background sound 30
minute recording

 z = x; %set up duplicate array to modify

 i = 1; %indexing value

 %this loop attempts to distinguish flight from ambient noise by
 %comparing signal standard deviations

 while i<N-step
 if std(x(i:i+step-1))< 6*std(c(i:i+step-1)) %also could use <stdevc %if
the standard deviation of a step in x is less than 6x the std of a step
 z(i:i+step-1) = 0; %then z(i) becomes zero and will
not be counted as flight
 else
 z(i:i+step-1) = 1; %otherwise, it will be
 end
 i = i+step;
 end

 newz = x(z>0); %newz contains only values of x deemed to be
flight (ones in z)

 tt = N/Fs; %total recorded time in chunk
 ft = length(newz)/Fs ; %time spent in flight during recorded chunk
 percentfly = ft/tt*100; %calc percent of time flying during recorded
chunk

 fprintf('\n\nThe flies flew for a total of %.2f seconds,', ft) %these two
display the findings via text
 fprintf('\napproximately %.2f%% of the recorded time, \n', percentfly)

 sf = 4; %sf determines how many 0.01 second intervals, constitute a bout of
flight:
 %This is arbitrary. a value of 4 means that all
 %flight bouts greater than 0.03 seconds will be
 %counted
 i=1; %indexing variable
 counter=0; %placeholder for variable that counts number of flight bouts
 lengths = []; %placeholder for array of flight bout durations
 kk = 1; %indexing variable
 spaces = []; %placeholder for array of spaces between flight bouts

 while i<(N-sf*step) %if i is less than the length of x minus the sf
number of steps
 if z(i:i+sf*step-1)==1 %if the next sf steps are flight (as determined
by z)
 nextstart = i; %saves this start point of a new bout
 if kk ~= 1
 spaces(kk-1) = (nextstart-previousend)/Fs; %calculate space
between bouts
 else
 end

 j=(i+sf*step); %set j to the start of the step folowing the already
determined bout
 clear d
 while j<=(N-step)
 if z(j:j+step-1)==0 %if the step does not contain flight
 d=j; %save this endpoint of the bout
 j=N; %break the loop
 else

 j = j+step; %otherwise, advance by one step and run
through checking again
 end
 end

 truth = exist('d'); %check if d exists (it doesn't if a flight
bout never ends, like at the end of a 30minute chunk)
 if truth == 0
 d = N; %set d as the last point in the 30 mintue
chunk
 end

 lengths(kk) = d-i; %d-1 is the length of the bout. add this
value to array lengths()
 kk = kk+1;
 counter = counter+1; %count that a flight bout has occurred
 i = d; %begin i at the end point of the bout
 previousend = i; %save this for calculating spacing between
bouts
 else
 i = i+step; %if no bout detected, advance one step
 end
 end

 avglength = mean(lengths);
 avglengthsec = avglength/Fs; %average length in seconds
 avgspace = mean(spaces);
 fprintf('with %.0f flight bouts longer than %.2f seconds \n', [counter,
((sf-1)*step)/Fs])

 fprintf(',an average flight bout duration of %.5f seconds \n', avglengthsec)
 fprintf('and an average time between flight bouts of %.5f seconds \n', avgspace)
 %displays this information

 U(q) = counter; %plots flight activity per 30 mintues in flight
bouts per half hour

 allnewz = [allnewz; newz]; %concatenation

 if hour == 19 && minute == 0 %to look at what is being counted as flight
graphically, enter time here and run program to see plot
 figure(q)
 plot(t,x)
 hold on
 plot(t,x.*z)
 axis([0 t(end) -1.1*max(abs(x)) 1.1*max(abs(x))])
 hold off
 end

 k = k + sam;
 minute = minute + sam/(Fs*60); %advance minute and sam for next
iteration
 if minute == 60
 minute = 0;
 if hour == 23
 hour = 0;
 else
 hour = hour + 1;
 end
 end
 q = q + 1;

 datablock(:,iteration) = [filenumber; hour; minute; ft; counter; avglengthsec;
avgspace];

 if lastrun == 1
 fprintf('\nTime: %02d:%02d\n', [hour, round(minute)]) %display final time
at the end of the loop
 end
 iteration = iteration + 1;
end

filename = 'allsoundz.wav'; %this writes the concatenated allnewz
audiowrite(filename,allnewz,Fs); %to a wav file that can be analyzed by
freqdetect.m

plot(0:.5:.5*q-1, U); %plots flight activity in bouts per 30 minutes over the
duration of the recording

freq_detect %make sure freqdetect.m is in the same folder as

flight_detect.m

datablock(end+1,1) = loc(1);
datablock(end+1,1) = loc(2);

